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Abstract

A new class of body-fitted grid system that can keep the third-order accuracy in time and space is proposed with the

help of the CIP (constrained interpolation profile/cubic interpolated propagation) method. The grid system consists of

the straight lines and grid points moving along these lines like abacus – Soroban in Japanese. The length of each line

and the number of grid points in each line can be different. The CIP scheme is suitable to this mesh system and the

calculation of large CFL (>10) at locally refined mesh is easily performed. Mesh generation and searching of upstream

departure point are very simple and almost mesh-free treatment is possible. Adaptive grid movement and local mesh

refinement are demonstrated.
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1. Introduction

The use of curvilinear coordinate system is important to represent the detailed flow structure-like
boundary layer around complex bodies [1]. In constructing such coordinate, however, little attention to the

accuracy has been made. This is the key issue because the degradation of accuracy by introducing curvi-

linear coordinate may cancel the advantage of curvilinear coordinate.

Besides this, there exist several interface capturing schemes at present. These are VOF (volume of fluid)

[2,3], level set [4], particle tracking [5] and the CIP (constrained interpolation profile/cubic interpolated

propagation) method [6–12]. These methods can accurately described severely distorted interfaces even with

fixed Cartesian grid. The merit of these schemes are that they can treat the deformation of the surface and

even break up, but the description of the boundary layer still needs locally refined mesh.
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Although we applied the CIP scheme to curvilinear system [13], we did not examine the accuracy. In this

paper, we shall propose a specific mesh system that can preserve the third-order accuracy in time and space

even in non-orthogonal coordinate system. For illustrative purpose, one-dimensional system is examined in

Section 2. In Section 3, a new mesh system is proposed to preserve the accuracy. Section 4 is devoted to the

discussion and demonstration of moving adaptive grid and almost mesh-free computation.
2. One-dimensional system

It would be easier to understand the intrinsic problem caused by curvilinear system in one-dimensional

case. Let us consider the linear wave propagation in non-uniform mesh system with an advection equation,

of
ot

þ u
of
ox

¼ 0: ð1Þ

There exist many higher-order algorithms to solve this equation. The primary concern of this paper is to
examine the accuracy of the scheme in non-uniform grid. If we use the non-uniform grid and the grid points

are numbered in uniform n space as xðnÞ, then Eq. (1) can be put into a form

of
ot

þ u
ox
on

� ��1
of
on

¼ 0: ð2Þ

Although each term like ox=on and of =on can be put into higher-order finite difference form, it will be

difficult to generate meshes keeping the higher-order accuracy for ox=on. For example, the CIP with ox=on
described by the fourth-order scheme becomes second-order if the ratio of neighboring mesh sizes becomes

more than 1.01 as shown later. This is because the term ‘‘fourth-order’’ is merely in the sense of Taylor

expansion while the higher-order errors are no more small for abrupt mesh change and become dominant
for the mesh system whose spacing changes stepwise.

In one dimension, it may be possible to construct the higher-order scheme by directly applying it to Eq.

(1) in non-uniform grid. However, it would be a hard task to extend it to multi-dimensionally deformed grid

system. In addition, we must introduce the time difference. Even in uniform mesh system, the accuracy is

reduced to the first-order when only the forward finite difference is used in time step even if the third-order

accurate spatial scheme is adopted. Therefore, both the time and space must be designed to be the same

order. It is also a subject of major concern to find an algorithm that can cancel the error caused by time step

difference in curvilinear system.
In this sense, the CIP scheme is one of the interesting schemes for curvilinear coordinate as well as for the

Cartesian coordinate because it has a compact support and the third-order accuracy both in time and space

as shown in the following section.
2.1. Advection with constant velocity in uniform mesh

Let us review the CIP method briefly. Although the nature operates in a continuous world, a dis-

cretization process is unavoidable in order to implement numerical simulations. The primary goal of any

numerical algorithm will be to retrieve the lost information inside the grid cell between these digitized

points. The CIP method tries to construct a solution inside the grid cell close enough to this real solution

of the given equation with some constraints. We here explain its strategy by using an advection equation

Eq. (1).
When the velocity is constant, the solution of Eq. (1) gives a simple translational motion of wave with

velocity u. The initial profile (solid line of Fig. 1(a)) moves like a dashed line in a continuous representation.



Fig. 1. The principle of the CIP method: (a) solid line is initial profile and dashed line is an exact solution after advection, whose

solution (b) at discretized points. (c) When (b) is linearly interpolated, numerical diffusion appears. (d) In the CIP, spatial derivative

also propagates and the profile inside a grid cell is retrieved.
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At this time, the solution at grid points is denoted by circles and is the same as the exact solution. However,

if we eliminate the dashed line as in Fig. 1(b), then the information of the profile inside the grid cell has been

lost and it is hard to imagine the original profile and it is natural to imagine a profile like that shown by

solid line in (c). Thus, numerical diffusion arises when we construct the profile by the linear interpolation

even with the exact solution as shown in Fig. 1(c). This process is called the first-order upwind scheme. On

the other hand, if we use quadratic polynomial for interpolation, it suffers from overshooting. This process
is the Lax–Wendroff scheme or Leith scheme [14].

What made this solution worse? This is why we neglect the behavior of the solution inside grid cell and

merely follow after the smoothness of the solution. From this consideration, we understand that a

method incorporating the real solution into the profile within a grid cell is an important subject. We

proposed to approximate the profile as shown below. Let us differentiate Eq. (1) with spatial variable x,
then we get

og
ot

þ u
og
ox

¼ � ou
ox

g; ð3Þ

where g stands for the spatial derivative of f , of =ox. In the simplest case where the velocity u is constant,

Eq. (3) coincides with Eq. (1) and represents the propagation of spatial derivative with a velocity u. By
this equation, we can trace the time evolution of f and g on the basis of Eq. (1). If g is predicted after

propagation as shown by the arrows in Fig. 1(d), the profile after one step is limited to a specific profile.

It is easy to imagine that by this constraint, the solution becomes very closer to the initial profile that is

real solution. Most importantly, the solution thus created gives a profile consistent with Eq. (1) even
inside the grid cell and thus a wave having wavelength of two-grid sizes can be accurately treated [12].

If two values of f and g are given at two grid points, the profile between these points can be interpolated

by cubic polynomial F ðxÞ ¼ ax3 þ bx2 þ cxþ d. Thus, the profile at nþ 1-step can be obtained shifting the

profile by uDt like f nþ1 ¼ F ðx� uDtÞ; gnþ1 ¼ dF ðx� uDtÞ=dx.

ai ¼
gi þ giup

D2
þ 2ðfi � fiupÞ

D3
;
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bi ¼
3ðfiup � fiÞ

D2
� 2gi þ giup

D
; ð4Þ
f nþ1
i ¼ aiX 3 þ biX 2 þ gni X þ f n

i ;
gnþ1
i ¼ 3aiX 2 þ 2biX þ gni ; ð5Þ

where we define X ¼ �uDt. Here, D ¼ �Dx, iup ¼ i� 1 for uP 0 and D ¼ Dx; iup ¼ iþ 1 for u < 0.

For constant velocity, the scheme becomes exactly conservative. Even in variable velocity field, we can
obtain the exactly conservative scheme [15–17] and the same procedure given in this paper can also be used

in such class of schemes. Interestingly, the CIP is proven to be the third-order in time and space easily by

Taylor expanding Eqs. (4) and (5) [18]. Numerically, this can be proven by the following test problem with a

propagation of sine wave.

The initial profile is

f ðx; t ¼ 0Þ ¼ 2:0þ sinð2pxÞ;
oxf ðx; t ¼ 0Þ ¼ 2pcosð2pxÞ ð06 x6 1Þ ð6Þ

and the system is periodic in space.
Changing the mesh spacing, the error is estimated by the following root mean square:

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNX
i fNum � fexactð Þ2

q
PNX

i fexact
; ð7Þ

where fNum is the numerical result and fexact is the exact solution, where NX is the number of meshes. The

time step Dt is defined so that CFL � uDt=Dx is kept to be 0.2 and u ¼ 1. Fig. 2 shows the numerical error at

t ¼ 4:0.
For comparison, we depict the results in Fig. 2 with the first-order upwind and the Lax–Wendroff

scheme, which are the first- and the second-order, respectively, in time as well as in space. The numerical

test shown in Fig. 2 clearly shows this dependence.
Fig. 2. The numerical error of the CIP, Lax–Wendroff and first-order upwind scheme at t ¼ 4:0.
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It should be noticed that the scheme of the first-order in time becomes the first-order even if the third-

order scheme is used in space because the advection proceeds equally in time and space and CFL ¼ uDt=Dx
is fixed.
2.2. Advection with variable velocity

Next we apply the method to a conservation law as

of
ot

þ u
of
ox

¼ �u
ou
ox

� H : ð8Þ

We also need an equation for the derivative

og
ot

þ u
og
ox

¼ H 0 � g
ou
ox

: ð9Þ

Thus we separate all the equations into advection phase

of
ot

þ u
of
ox

¼ 0;
og
ot

þ u
og
ox

¼ 0; ð10Þ

and non-advection phase:

of
ot

¼ �u
ou
ox

;

og
ot

¼ �2g
ou
ox

� f
o2u
ox2

: ð11Þ

The advection phase is calculated by Eqs. (4) and (5), but we must remind that the advection velocity

changes during the propagation. As for the advection velocity, we have several choices but we discuss only
three cases. (1) ui at the grid point. (2) u� at the upstream departure point. (3) These average

uave � ðui þ u�Þ=2.
As for non-advection phase, we used a finite difference in previous papers. For the application towards

the mesh-less form as will be given later in this paper, we choose to use f and g directly. If u is given, these

equations can be solved in closed form for f and g without finite difference. Thus, Eq. (11) is put into a

numerical solution as

f nþ1
i ¼ f �

i exp½�ou=oxDt�;
gnþ1
i ¼ g�i exp½�ou=oxDt� � f �o2u=ox2Dt; ð12Þ

where f �; g� are the results after advection phase.
This scheme is tested by the following analytical solution. If the advection velocity is

uðxÞ ¼ 1

1þ ax
; ð13Þ

then the analytical solution is easily obtained as



Fig. 3. Error in conservative equation. Three advection velocities are tested.
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f ðxi; tÞ ¼
f ðx0; 0Þuðx0Þ

uðxiÞ
; ð14Þ
x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2aðxi þ x2i =2� tÞ

p
� 1

a
:

The initial condition is f ¼ expð�ðx� 0:3Þ2=0:052Þ and the spatial system size is 1, Dt ¼ 0:2Dx and a ¼ 1.

The boundary value is fixed to 0 because no perturbation reaches the boundary during calculation. All the

calculation in Section 3 also use the same boundary condition. The accuracy of the solution is estimated by

Eq. (7) at t ¼ 0:4 and is given in Fig. 3. It is very interesting to observe that the solution becomes the third-

order if we use the averaged advection velocity both for advection and non-advection terms. With other

choices, the scheme becomes the first-order. It should be noticed that we have used time-splitting technique

and separately solved advection and non-advection terms. Usually, the time-splitting has been believed to
deteriorate the accuracy. If the advection velocity is correctly estimated, the present scheme has been

proved to retain the third-order in time and space since the solution given in Eq. (14) develops in a similar

manner both in time and space.

2.3. CIP in non-uniform mesh

In the previous section, we confirmed that the CIP method has the third-order accuracy in time and

space in uniform mesh. In this section, we show how the accuracy of the CIP method will be preserved in

non-uniform mesh.

When the CIP method is applied to non-uniform mesh system, two different approaches are possible.

One is to directly use the CIP algorithm in non-uniform mesh and the other is to use the CIP in imaginary

space of curvilinear coordinate as proposed in the previous paper [13]. In the former method, the mesh size
at the grid point i is assumed to be Dxi, thus the CIP method in non-uniform mesh can be described by just

replacing Dx with Dxi in Eqs. (4) and (5).

In the latter case, the basic equations are transformed into

of
ot

þ U
of
on

¼ 0; ð15Þ
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oðonf Þ
ot

þ U
oðonf Þ
on

� u
1

dx
dn

� �2 d2x

dn2

2
64

3
75onf ¼ 0; ð16Þ

where onf means the derivative of f in n coordinate since we are using the CIP for Eq. (15) in n coordinate

instead of x. U ¼ u=ðdx=dnÞ is the contravariant velocity. Although there are several method to represent

dx=dn and d2x=dn2 in finite difference form, we here choose the fourth-order scheme:

dx
dn

¼ �xiþ2 þ 8ðxiþ1 � xi�1Þ þ xi�2

12Dn
; ð17Þ

d2x

dn2
¼ �xiþ2 þ 16xiþ1 � 30xi þ 16xi�1 � xi�2

12Dn2
: ð18Þ

Case 1. Both schemes are tested by employing two kinds of mesh size for the same initial condition of f and
oxf as in the uniform case (Eq. (6)). In the first case, the mesh size is abruptly changed stepwise only at two

points but is uniform elsewhere as

rðiÞ ¼ 1:0; IL6 i6 IR;
a; otherwise;

�
ð19Þ

where a ¼ ð0:5; 1:0; 1:01; 1:05; 1:2; 1:5Þ. Therefore, mesh size Dxi ¼ Dx � rðiÞ in which Dx � 1:0=
PNX

i¼0 rðiÞ.
The number of employed meshes is changed as NX ¼ ð100; 200; 500; 1000; 2000Þ for each a, and the

grid numbers IL ¼ NX=4, IR ¼ ILþ 20� NM � 1, NM ¼ NX=100. Fig. 4 shows the numerical error � for

each a.
The remarkable point of this result is that the direct CIP method keeps the third-order accuracy and the

error for a ¼ 0:5 is almost the same as uniform mesh CIP. The CIP with coordinate transformation,

however, becomes the second-order even when the ratio of mesh size is only 1.01. This is very significant

conclusion because it would be hard to generate the mesh that changes only by 1.01 in all the neighbouring
meshes.
Fig. 4. The numerical error � for each a in case 1 with (a) the coordinate transformed CIP and (b) the direct CIP.
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Case 2. In the second case, the mesh is gradually changed as

rðiÞ ¼ 1:0þ b sin 2pði� ILÞ=ðIR� ILÞð Þ; IL6 i6 IR;
1:0 otherwise;

�
ð20Þ

where b ¼ ð0:0; 0:05; 0:2; 0:35; 0:5Þ. The mesh size Dxi ¼ Dx � rðiÞ in which Dx � 1:0=
PNX

i¼0 rðiÞ.
Fig. 5 shows the nonuniform mesh size for b ¼ 0:5 in Eq. (20) and initial profile. The CFL condition

uDt=Dx is 0.2 in both cases. The number of employed meshes is changed as NX ¼ ð100; 200; 500;
1000; 2000Þ for each b, and the grid numbers IL ¼ NX=4, IR ¼ ILþ 60� NM � 1, NM ¼ NX=100.
Fig. 6 shows the numerical error � for each b. Even for such smooth change of mesh, the error is still
significant.
Fig. 5. (a) The mesh size Dxi and (b) initial condition of f for NX ¼ 100 and a ¼ 0:5.

Fig. 6. The numerical error � for each a in case 2 with (a) the coordinate transformed CIP and (b) the direct CIP.
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3. Two-dimensional system and Soroban grid

3.1. Accuracy of splitting scheme

As shown in the previous section, direct application of the CIP to non-uniform grid system can

achieve the third-order accuracy in time and space. However, the application of the method to multi-

dimensions is not possible in general. This is the reason why we used the coordinate-transformation in

the previous paper [13]. It would be useful to consider a special mesh system that keeps the higher-order

accuracy. In adopting the special mesh system, we take advantage of the characteristics of the method.
Let us start with a conservation law in two dimensions:

of
ot

þ ouf
ox

þ ovf
oy

¼ 0: ð21Þ

As in one-dimensional scheme, spatial derivative of this equation leads to

ogx
ot

þ u
ogx
ox

þ v
ogx
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¼ Rx;
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þ u
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þ v
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oy

¼ Ry ; ð22Þ

where gx � of =ox; gy � of =oy. We have defined the non-advection terms Rx;Ry as

Rx ¼ �gx 2
ou
ox

�
þ ov
oy

�
� gy

ov
ox

� f
o
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ox

�
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oy

�
;

Ry ¼ �gx
ou
oy

� gy
ou
ox

�
þ 2
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oy

�
� f

o

oy
ou
ox

�
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oy

�
: ð23Þ

Eqs. (21) and (22) are split into advection and non-advection phases as in one-dimensional case.

Advection phase:
of
ot

þ u
of
ox

þ v
of
oy

¼ 0;
ogx
ot

þ u
ogx
ox

þ v
ogx
oy

¼ 0;
ogy
ot

þ u
ogy
ox

þ v
ogy
oy

¼ 0: ð24Þ

Non-advection phase:

of
ot

¼ �f
ou
ox

�
þ ov
oy

�
;
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ogx
ot

¼ Rx;
ogy
ot

¼ Ry : ð25Þ

The time evolution of f in advection phase at the grid point ðxi; yiÞ is realized by transferring f at the

upstream departure point given by ðxi � uDt; yi � vDtÞ. Retrieving the information at this departure point
between four neighbouring grid points is merely the interpolation procedure inside the grid cell. The direct

CIP in multi-dimensions introduces the cubic polynomial in multi-dimensional space. There exists another

choice to construct the polynomial by splitting scheme that uses the one-dimensional scheme sequentially in

all directions [7]. In this paper, we use the latter method.

Therefore, Eq. (24) is separated as
of
ot

þ v
of
oy

¼ 0; ð26Þ
ogy
ot

þ v
ogy
oy

¼ 0; ð27Þ
ogx
ot

þ v
ogx
oy

¼ 0; ð28Þ
and then
of
ot

þ u
of
ox

¼ 0; ð29Þ
ogx
ot

þ u
ogx
ox

¼ 0; ð30Þ
ogy
ot

þ u
ogy
ox

¼ 0: ð31Þ

It is interesting to examine the accuracy of the proposed scheme in two dimensions because the direc-

tional splitting usually deteriorates the accuracy. For this purpose, we use the same analytical solution Eq.

(14) but apply it to 45� direction and adopt the advection velocity u ¼ v ¼ 1=½1þ aðxþ yÞ�. Non-advection

phase Eq. (25) is solved only by algebraic manipulation as in Eq. (12) once the analytical form is used for
u; v. We tested this procedure for the propagation of a profile

f ¼ exp

 
� ðx� 0:3Þ2 þ ðy � 0:3Þ2

0:052

!
ð32Þ

and the system size is x ¼ 1, y ¼ 1, and Dt ¼ 0:2Dx, a ¼ 1:
Since we have already employed two splitting procedures, it seems to be hard to expect the accurate

solution with the conventional schemes. Surprisingly, however, two splitting schemes, the Type-M and

Type-C schemes that will be described later on, have the third-order accuracy in time and space as shown in



Fig. 7. Error in two-dimensional conservative equation. The region of Dx > 0:005 coincides with Fig. 3 for Type-C, while Type-M is

not sensitive to advection speed.
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Fig. 7 where the error estimated at t ¼ 0:4 in the same manner as before. The result with Type-C agrees with

that in Fig. 3 for the same range of Dx. Since Type-M is already less accurate owing to linear interpolation,

it is insensitive to the choice of advection speed.

3.2. Type-M scheme

Let us consider a special mesh system shown in Fig. 8, where the vertical mesh (y-direction) is the
straight line, while the grid points move along each line. In this system, we obtain the solution as follows. If

the upstream departure point is given as ðn; gÞ ¼ ðxi � uDt; yi � vDtÞ, at first one pair of lines satisfying

xi1 < n < xi1þ1 is searched. Then two pairs of points satisfying yj1 < g < yj1þ1 and yj2 < g < yj2þ1 are sear-

ched along two lines at x ¼ xi1 and x ¼ xi1þ1, respectively. Finally, the interpolation is performed with four

points ði1; j1Þ; ði1; j1þ 1Þ; ði1þ 1; j2Þ; ði1þ 1; j2þ 1Þ.
At first, the interpolation along the vertical straight line gives Ai1;g and Ai1þ1;g by using the one-

dimensional scheme. This means that f and gy are transported as shown in Eq. (5) along y-direction.
Fig. 8. Schematics of the Soroban grid. All the grid points move along the vertical lines. The number of grid points in each line can be

different.
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This corresponds to Eqs. (26) and (27). Therefore, A and oyA are readily obtained, where oyA represents

oA=oy.
In the second step, T is given by interpolation along the straight line connecting Ai1;g and Ai1þ1;g by using

the one-dimensional scheme in the x-direction (see Fig. 8). In this step, A and oxA must be transported

according to Eqs. (29) and (30). However, in the first step, only oyA is obtained and we need some method

to estimate oxA from gx, which is the procedure to solve Eq. (28).

In the previous paper [7], we proposed to use the first-order scheme for Eqs. (28) and (31) because the

derivative in the direction perpendicular to the propagating direction is not sensitive and hence can be
estimated only roughly. Such a splitting scheme was at first proposed in [7] which we call the ‘‘Type-M’’

scheme, while the direct multi-dimensional scheme commonly used is called the ‘‘Type-A’’ [10].

Here we represent the cubic polynomial of the procedure Eq. (5) by
f nþ1
i ¼ CIP 1Dðfi; gi; fiup; giup; x ¼ X Þ;
gnþ1
i ¼ o

ox
CIP 1Dðfi; gi; fiup; giup; x ¼ X Þ: ð33Þ
This means the polynomial is given in terms of x connecting the points i and iup, and then the substitution

of x ¼ X gives the updated value f nþ1
i . The spatial derivative of this polynomial gives the updated value

gnþ1
i . In addition, if the linear interpolation is written as FDM 1Dðfi; fiup; x ¼ X Þ, then all the procedures

are given by

Step 1.
Ai1;g ¼ CIP 1Dðfi1;j1; oyfi1;j1; fi1;j1þ1; oyfi1;j1þ1; y ¼ gÞ ! Eq: ð26Þ;
oyAi1;g ¼
o

oy
CIP 1Dðfi1;j1; oyfi1;j1; fi1;j1þ1; oyfi1;j1þ1; y ¼ gÞ ! Eq: ð27Þ;
oxAi1;g ¼ FDM 1Dðoxfi1;j1; oxfi1;j1þ1; y ¼ gÞ ! Eq: ð28Þ: ð34Þ
The same procedure is repeated also for i1þ 1 and j2.
Step 2.
Tn;g ¼ CIP 1DðAi1;g; oxAi1;g;Ai1þ1;g; oxAi1þ1;g; x ¼ nÞ ! Eq: ð29Þ;
oxTn;g ¼
o

ox
CIP 1DðAi1;g; oxAi1;g;Ai1þ1;g; oxAi1þ1;g; x ¼ nÞ ! Eq: ð30Þ;
oyTn;g ¼ FDM 1DðoyAi1;g; oyAi1þ1;g; x ¼ nÞ ! Eq: ð31Þ: ð35Þ

Thus the value and the derivatives at ði1; j1Þ at the next time step nþ 1 are given as f nþ1
i1;j1 ¼ Tn;g,

oxf nþ1
i1;j1 ¼ oxTn;g, oyf nþ1

i1;j1 ¼ oyTn;g.
For clear understanding of this procedure, we here show a program for Type-M scheme. Last two blocks

named ‘‘interpolation along line’’ and ‘‘interpolation horizontally’’ correspond to the above procedure.

Other lines are finding upstream points and neighbouring grid points as will be described in Section 4.2.

f n ¼ F ; oxf n ¼ GX ; oyf ¼ GY ; f nþ1 ¼ FN ; oxf nþ1 ¼ GXN ; oyf nþ1 ¼ GYN .
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3.3. Type-C scheme

Although theType-M scheme is sufficient formany applications, a littlemore accurate scheme is possible at

the price of memory requirement. This scheme is proposed by Aoki [19] and we call it ‘‘Type-C scheme’’

hereafter. In this scheme, independent variables are now f ; oxf ¼ gx; oyf ¼ gy ; oxyf ¼ oxgy ¼ oygx in two di-

mensions. Instead of using linear interpolation in the last line of step 1, the one-dimensional CIP scheme is

applied to the advection of ðoxf Þ and oyðoxf Þ. The latter corresponds to the spatial derivative of Eq. (28)

oðoygxÞ
ot

þ v
oðoygxÞ

oy
¼ 0: ð36Þ

Thus the CIP is applied to two pairs ðf ; gyÞ in Eqs. (26) and (27) and ðgx; oygxÞ in Eqs. (28) and (36). Then all

the procedures are given as

Step 1.

Ai1;g ¼ CIP 1Dðfi1;j1; oyfi1;j1; fi1;j1þ1; oyfi1;j1þ1; y ¼ gÞ;
oyAi1;g ¼
o

oy
CIP 1Dðfi1;j1; oyfi1;j1; fi1;j1þ1; oyfi1;j1þ1; y ¼ gÞ;
oxAi1;g ¼ CIP 1Dðoxfi1;j1; oxyfi1;j1; oxfi1;j1þ1; oxyfi1;j1þ1; y ¼ gÞ;
oyðoxAi1;gÞ ¼
o

oy
CIP 1Dðoxfi1;j1; oxyfi1;j1; oxfi1;j1þ1; oxyfi1;j1þ1; y ¼ gÞ: ð37Þ

By use of all these values, four independent variables at ðn; gÞ in Fig. 8 are calculated as follows.

Step 2.

Tn;g ¼ CIP 1DðAi1;g; oxAi1;g;Ai1þ1;g; oxAi1þ1;g; x ¼ nÞ;
oxTn;g ¼
o

ox
CIP 1DðAi1;g; oxAi1;g;Ai1þ1;g; oxAi1þ1;g; x ¼ nÞ;
oyTn;g ¼ CIP 1DðoyAi1;g; oxyAi1;g; oyAi1þ1;g; oxyAi1þ1;g; x ¼ nÞ;
oxðoyTn;gÞ ¼
o

ox
CIP 1DðoyAi1;g; oxyAi1;g; oyAi1þ1;g; oxyAi1þ1;g; x ¼ nÞ: ð38Þ

Thus the value and the derivatives at ði1; j1Þ at the next time step nþ 1 are given as f nþ1
i1;j1 ¼ Tn;g,

oxf nþ1
i1;j1 ¼ oxTn;g, oyf nþ1

i1;j1 ¼ oyTn;g and oxyf nþ1
i1;j1 ¼ oxyTn;g.
3.4. Soroban grid and accuracy

It is very important to note that the number of grid points along each j line can be different. Corre-

sponding four points j1; j1þ 1; j2; j2þ 1 including ðn; gÞ point can be numerically searched. Most efficient

method for finding the grid points in nonuniform mesh was proposed in [20]. By this method, the grid

belonging to the upstream departure point is readily found with only one indexing procedure. Since this

mesh system looks like an abacus, we call this system ‘‘Soroban’’ which is the Japanese name of abacus.



Fig. 9. Grid arrangement and initial profile for benchmark test.
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For the benchmark test, we adopted a mesh system shown in Fig. 9. This mesh is symmetrical at the

center in x-direction. The leftmost region is rectangular and it size is 40� 96 and Dx ¼ Dy ¼ Dx0. The
length of the second trapezoidal region is 56 in x-direction and the mesh size Dx in x-direction is the same as

that in the first region. The mesh size in y-direction changes linearly reaching Dy ¼ RATE� Dx0 at the
center. The benchmark test was done for three cases RATE ¼ 0:5; 1:0; 1:5 by changing the mesh size as

Dx0 ¼ 8; 4; 2; 1 for measuring accuracy. RATE ¼ 1:0 corresponds to the uniform region and RATE ¼ 0:5
gives a shape like Fig. 9.

Let us summarize the mesh arrangement denoting the mesh size as Dx0 ¼ 8=k (k ¼ 1; 2; 4; 8 is used

to change the mesh size) and setting the grid point be ði; jÞ, where i ¼ 0; 1; . . . ; 24k, j ¼ 0; 1; . . . ; 12k,
then

Dy ¼ Dx0; i ¼ 0; . . . ; 5k;
Dy ¼ Dx0 � ð1þ ðRATE� 1Þ � ði� 5kÞ=7kÞ; i ¼ 5k; . . . ; 12k;
Dy ¼ Dx0 � ð1þ ðRATE� 1Þ � ð19k � iÞ=7kÞÞ; i ¼ 12k; . . . ; 19k;
Dy ¼ Dx0; i ¼ 19k; . . . ; 24k; ð39Þ

where Dx ¼ Dx0 is fixed constant and Dy is constant along the line, ði; jÞ ¼ ð0; 0Þ is the origin and

ði; jÞ ¼ ð96; 48Þ is the center.

We calculate the propagation of a profile

f ðx; yÞ ¼
1þcos p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xcÞ2þðy�ycÞ2

p
=R

� �
2

; ðx� xcÞ2 þ ðy � ycÞ2 < R2;
0; otherwise

(
ð40Þ

and R ¼ 15; ðxc; ycÞ ¼ ð16; 80Þ; u ¼ 0:1; v ¼ �0:04;Dt=Dx0 ¼ 2 are used for the test run. The initial value for

the derivatives are estimated by analytically differentiating Eq. (40). At t ¼ 1600, the initial profile moves to

the opposite side of Fig. 9 and the numerical error is estimated by Eq. (7) and is shown in Fig. 10. Both

Type-M and Type-C have approximately the third-order accuracy. The third-order accuracy of the Type-C

is as is expected because it uses the CIP procedure all through the process. Although the Type-M uses the

first-order scheme (linear interpolation) in estimating the derivative in perpendicular direction, it gives the

accuracy better than second-order.



Fig. 10. The numerical error � for different grid shape with Type-M and Type-C.
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4. Moving adaptive Soroban grid

4.1. Adaptive grid

Here we shall discuss the possibility to use the Soroban grid as for the adaptive grid to the moving body.

We must remind that all the discussion should straightforwardly apply to three dimensions. For the sim-

plest choice of the monitoring function to the variation, we use the following quantity:

Mðx; tÞ � 1

 
þ a

of
ox

� �2
!1=2

þ b
o2f
ox2

� �2

: ð41Þ

Therefore monitoring function M becomes large for larger gradient region. Since the Soroban grid is
straight in one-direction, it is much easier to generate the adaptive grid points along the line.

The reorganization of the grid point is easily performed by accumulated monitoring function as shown

in Fig. 11. If we divide the accumulated function into equal pieces and get the x coordinate to get such

integration
Fig. 11. Accumulated monitor function is divided into equal pieces. The x boundary of each piece gives the grid point.



Fig. 12. The straight lines can move in horizontal direction and grid points moves along the straight lines.
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Mi ¼
Z xiþ1

xi

Mðx; tÞdx ¼ 1

N

Z xN

x1

Mðx; tÞdx ði ¼ 1; . . . ;NÞ; ð42Þ

then these points can be used as grid points.

In the two-dimensional mesh shown in Fig. 12, mesh moving is performed as follows.

• Calculate Mðy; tÞ along each line.
• Generate the points along each line.

• Calculate the average Mðx; tÞ from all the points along each line.

• Move the lines.

This moving grid scheme is applied to the solid body revolution proposed by Zalesak [21]. The mesh of

101� 101 is used and the rotation center is located at ðxc; ycÞ ¼ ð50; 50Þ. The initial profile is

f ðx; yÞ ¼ 1; R6 17 and ðjx� 26j > 3 or y > 60Þ;
0; otherwise;

�
ð43Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 26Þ2 þ ðy � 51Þ2

q
. The mesh size is initially Dx ¼ Dy ¼ 1:0. The time step is fixed to Dt ¼ 1,

and a ¼ 1 and b ¼ 0:3. Revolution speed is set so that the revolution is completed after 800 steps:

u ¼ �2pðy � ycÞ=800;
v ¼ 2pðx� xcÞ=800:

�
ð44Þ

Fig. 13 shows the contour where increment is 0.1 and the corresponding grid points are depicted. It is

important to note that the time step is fixed to Dt ¼ 1, thus as the mesh is moving as shown in the figure, the

mesh can be very small and the CFL can easily exceed 1. In this simulation, we do not need the information

of the connectivity between two points in different lines. The upstream departure point is searched along the

line and can be separated by several mesh size from the terminal point. Actually, the maximum CFL was 22
at the locally refined mesh.

4.2. Local mesh refinement

It would be useful to notice that the present mesh system is very flexible and can describe quite a large

class of surface as shown in Fig. 14. In the left figure, the length of each line and the number of grid points

on each line can be different. It is important to note that the connectivity of the points along neighbouring



Fig. 13. Solid body revolution. Density contour and grid points. (a) t ¼ 0, (b) t ¼ 133, (c) t ¼ 800.

Fig. 14. Flexible adaptive mesh is possible by the Soroban grid.
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two lines is not required and only the grid points shown in the right figure of Fig. 14 are used for local

calculation.

The Soroban grid can easily incorporate the local mesh refinement [22]. Let us prepare two Soroban

grids and calculate the same problem as in Fig. 13. Child grid system moves loosely coupled with the rigid

body. We can use the adaptive scheme that was introduced in the previous section again within this child



Fig. 15. (Left) A method to find a line that includes upstream point. (Right) ðxnew; ynewÞ is the upstream point. YGðigridÞ is the current
position.
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grid. For simplicity, we will not treat this problem here. As already clarified, only procedure we need is to

find upstream departure points.

If the mesh-free grid system is employed, nearest neighbouring grid points for a specific upstream point

can be found with the comparison of these positions. These operations are waste of computation time. In

order to simplify the operations, we employ a uniform one-dimensional subgrid system [20], whose spacing

is dx as shown in Fig. 15. The subgrid, to which a position belongs, can be easily found by a conventional

method frequently used in the particle codes. Namely, if a position is located at ðxnew; ynewÞ, the number ix of
the subgrid is calculated by

ix ¼ INTðxnew=dxÞ; ð45Þ

where INT means integer (see program in Section 3.2).

The cell, to which each subgrid belongs, is beforehand defined, that is, ix is initially related to the

cell number ISðixÞ, where IS ¼ 1 if the subgrid lays between x1 and x2 and so on, as shown in Fig. 15.

The distance between two lines are selected to the integral times of a small size dx for the convenience of
the calculation of points location. In this method, the lines move in a discrete manner, and hence dxmust be

chosen as small as possible for a smoothly moving grid system. Since ISðixÞ is one-dimensional array, a

huge number of subgrid can be used. Once the line is specified, it is much easier to find nearest grid points
along the line as shown in the program of Section 3.2.

Even if the parent grid points and child grid points are overlapped in the same place or become very

closer with each other, we only need to find nearest four points neighbour to upstream point. Since CFL

can be large as shown already, no difficulty occurs from such overlapping.

Fig. 16 shows the calculation results for the same problem as in Fig. 13. Parent grid is 30� 30 and child

grid is 60� 60 covering the square area of 45� 45 in size.
5. Conclusion

We have proposed Soroban grid which can be used to describe complex body. We confirmed that the

CIP can realize the third-order accuracy both in time and space in such mesh system. The merit of the

Soroban grid is

• It is easy to generate.

• Searching the upstream departure point is easy and can be done by one step by referring to the index.



Fig. 16. Solid body revolution. Parent and child grids can be very close as in the top-left figure. Density contour and grid points at

t ¼ 0, t ¼ 133 and t ¼ 800.
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• High accuracy.

• CFL can be large.

Since the spatial derivatives are also obtained by the CIP algorithm, the hyperbolic-type equation with

advection and non-advection terms can be treated in the present algorithm [23] as in the case of Sections 2.2
and 3.1. The present scheme can be straightforwardly applied to the plasma simulation [24] and the

propagation of electromagnetic wave. Application to the fluid dynamic equations will be discussed in future

papers as well as three dimensional applications.
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